153 research outputs found

    Compressive Sampling based Multiple Symbol Differential Detection for UWB Communications

    Get PDF
    Compressive sampling (CS) based multiple sym- bol differential detectors are proposed for impulse-radio ultra- wideband signaling, using the principles of generalized likelihood ratio tests. The CS based detectors correspond to two communica- tion scenarios. One, where the signaling is fully synchronized at the receiver and the other, where there exists a symbol level synchro- nization only. With the help of CS, the sampling rates are reduced much below the Nyquist rate to save on the high power consumed by the analog-to-digital converters. In stark contrast to the usual compressive sampling practices, the proposed detectors work on the compressed samples directly, thereby avoiding a complicated reconstruction step and resulting in a reduction of the implemen- tation complexity. To resolve the detection of multiple symbols, compressed sphere decoders are proposed as well, for both com- munication scenarios, which can further help to reduce the sys- tem complexity. Differential detection directly on the compressed symbols is generally marred by the requirement of an identical measurement process for every received symbol. Our proposed detectors are valid for scenarios where the measurement process is the same as well as where it is different for each received symbol

    Generalized Code-Multiplexing for UWB Communications

    Get PDF
    Code-multiplexed transmitted reference (CM-TR) and code-shifted reference (CSR) have recently drawn attention in the field of ultra-wideband communications mainly because they enable noncoherent detection without requiring either a delay component, as in transmitted reference, or an analog car- rier, as in frequency-shifted reference, to separate the reference and data-modulated signals at the receiver. In this paper, we propose a generalized code-multiplexing (GCM) system based on the formulation of a constrained mixed-integer optimization problem. The GCM extends the concept of CM-TR and CSR while retaining their simple receiver structure, even offering better bit-error-rate performance and a higher data rate in the sense that more data symbols can be embedded in each transmitted block. The GCM framework is further extended to the cases when peak power constraint is considered and when inter-frame interference exists, as typically occurs in high data-rate transmissions. Numerical simulations performed over demanding wireless environments corroborate the effectiveness of the proposed approach

    Rainfall Map from Attenuation Data Fusion of Satellite Broadcast and Commercial Microwave Links

    Get PDF
    The demand for accurate rainfall rate maps is growing ever more. This paper proposes a novel algorithm to estimate the rainfall rate map from the attenuation measurements coming from both broadcast satellite links (BSLs) and commercial microwave links (CMLs). The approach we pursue is based on an iterative procedure which extends the well-known GMZ algorithm to fuse the attenuation data coming from different links in a three-dimensional scenario, while also accounting for the virga phenomenon as a rain vertical attenuation model. We experimentally prove the convergence of the procedures, showing how the estimation error decreases for every iteration. The numerical results show that adding the BSL links to a pre-existent CML network boosts the accuracy performance of the estimated rainfall map, improving up to 50% the correlation metrics. Moreover, our algorithm is shown to be robust to errors concerning the virga parametrization, proving the possibility of obtaining good estimation performance without the need for precise and real-time estimation of the virga parameters

    Fast Multi-Symbol Based Iterative Detectors for UWB Communications

    Get PDF
    Ultra-wideband (UWB) impulse radios have shown great potential in wireless local area networks for localization, coexistence with other services, and low probability of interception and detection. However, low transmission power and high multipath effect make the detection of UWB signals challenging. Recently, multi-symbol based detection has caught attention for UWB communications because it provides good performance and does not require explicit channel estimation. Most of the existing multi-symbol based methods incur a higher computational cost than can be afforded in the envisioned UWB systems. In this paper, we propose an iterative multi-symbol based method that has low complexity and provides near optimal performance. Our method uses only one initial symbol to start and applies a decision directed approach to iteratively update a filter template and information symbols. Simulations show that our method converges in only a few iterations (less than 5), and that when the number of symbols increases, the performance of our method approaches that of the ideal Rake receiver

    Fast Multi-Symbol Based Iterative Detectors for UWB Communications

    Get PDF
    Ultra-wideband (UWB) impulse radios have shown great potential in wireless local area networks for localization, coexistence with other services, and low probability of interception and detection. However, low transmission power and high multipath effect make the detection of UWB signals challenging. Recently, multi-symbol based detection has caught attention for UWB communications because it provides good performance and does not require explicit channel estimation. Most of the existing multi-symbol based methods incur a higher computational cost than can be afforded in the envisioned UWB systems. In this paper, we propose an iterative multi-symbol based method that has low complexity and provides near optimal performance. Our method uses only one initial symbol to start and applies a decision directed approach to iteratively update a filter template and information symbols. Simulations show that our method converges in only a few iterations (less than 5), and that when the number of symbols increases, the performance of our method approaches that of the ideal Rake receiver

    Compressive sampling based differential detection for UWB impulse radio signals

    Get PDF
    Noncoherent detectors significantly contribute to the practical realization of the ultra-wideband (UWB) impulse-radio (IR) concept, in that they allow avoiding channel estimation and provide highly efficient reception capabilities. Complexity can be reduced even further by resorting to an all-digital implementation, but Nyquist-rate sampling of the received signal is still required. The current paper addresses this issue by proposing a novel differential detection (DD) scheme, which exploits the compressive sampling (CS) framework to reduce the sampling rate much below the Nyquist-rate. The optimization problem is formulated to jointly recover the sparse received signal as well as the differentially encoded data symbols, and is compared with both the separate approach and the scheme using the compressed received signal directly, i.e., without reconstruction. Finally, a maximum a posteriori based detector using the compressed symbols is developed for a Laplacian distributed channel, as a reference to compare the performance of the proposed approaches. Simulation results show that the proposed joint CS-based DD brings the considerable advantage of reducing the sampling rate without degrading the performance, compared with the optimal MAP detector

    Cross-layer link adaptation for goodput optimization in MIMO BIC-OFDM systems

    Get PDF
    This work proposes a novel cross-layer link performance prediction (LPP) model and link adaptation (LA) strategy for soft-decoded multiple-input multiple-output (MIMO) bit-interleaved coded orthogonal frequency division multiplexing (BIC-OFDM) systems employing hybrid automatic repeat request (HARQ) protocols. The derived LPP, exploiting the concept of effective signal-to-noise ratio mapping (ESM) to model system performance over frequency-selective channels, does not only account for the actual channel state information at the transmitter and the adoption of practical modulation and coding schemes (MCSs), but also for the effect of the HARQ mechanism with bit-level combining at the receiver. Such method, named aggregated ESM, or αESM for short, exhibits an accurate performance prediction combined with a closed-form solution, enabling a flexible LA strategy, that selects at every protocol round the MCS maximizing the expected goodput (EGP), i.e., the number of correctly received bits per unit of time. The analytical expression of the EGP is derived capitalizing on the αESM and resorting to the renewal theory. Simulation results carried out in realistic wireless scenarios corroborate our theoretical claims and show the performance gain obtained by the proposed αESM-based LA strategy when compared with the best LA algorithms proposed so far for the same kind of systems
    • …
    corecore